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We study the time evolution of a system of vortices in a strip in the thermody- 
namic limit. We prove the existence and the uniqueness of the solution of the 
equation of motion for a regularized version of the usual vortex dynamics. We 
extend this result to a system of particles interacting in one dimension via a 
long-range potential. 
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1. INTRODUCTION 

Vortex theory has been introduced in the 19th century to study some 
important features of fluid mechanics. (l~ More recently it has been greatly 
developed for numerical purposes and rigorous connections between vortex 
theory and hydrodynamics in two dimensions have been established. (2'3~ 
(Many papers have been devoted to the numerical analysis and it is not 
possible to quote all of them here.) Moreover such theory plays an 
important r61e in superfluidity and superconductivity (for an elementary 
introduction see Ref. 4). 

The statistical mechanics of a system of vortices has been studied in 
connection with the theory of turbulence. The first paper in this direction is 
due to Onsager. (5) Recently Fr6hlich and Ruelle have studied rigorously 
the thermodynamic limit for these systems. (6) 

It is quite natural to study the time evolution of a vortex system. When 
the number of vortices involved is finite, many properties of the orbits have 
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been obtained using both analytical and numerical methods. (3'7 11) In this 
paper we want to study the time evolution when the number of vortices is 
infinite, but the local density is finite. Such an evolution could not exist for 
two reasons: firstly, the infinite number of particles can produce some 
cooperative effect so that infinitely many vortices can arrive in a bounded 
region in a finite amount of time (12'~3); secondly, the singular character of 
the interaction can produce collapses involving a finite number of vortices. 
In this paper we overcome the first difficulty by restricting in a convenient 
way the initial condition (this is our main result). The second difficulty is 
not particular to the infinite case but it also arises in the few-body 
dynamics. (1~ In our case it is avoided by introducing a regularized 
version of the interaction. 

In this note we study a system of vortices moving in a strip. It is 
known that the time evolution in statistical mechanics depends in a crucial 
way on the dimension of the space (12) and the simplest models are one- 
dimensional ones, which is the case considered here. Furthermore a diffi- 
culty arises from the long range of the interaction between the vortices. 
Nevertheless in our case the presence of a boundary prevents strong 
interaction at long distances. 

In Section 2 we introduce the model. In Section 3 we prove the 
existence and uniqueness of the time evolution problem, as well as some 
statistical estimates. Finally we state a result concerning a one-dimensional 
system of Newton particles with long-range interaction. 

2. VORTEX MODEL 

We consider the following Hamiltonian system: N particles, called 
vortices, whose positions are denoted by qi = (xi, Y i ) ~  A c R 2, evolve ac- 
cording to the following equations: 

N 

qi(l) = E V~ajgA(qi( t ) ,q j ( t ) )  + V~aiYA(qi( t))  (2.1) 
j=l  
j ~ i  

where a i ~ [~ is the intensity of the ith vortex, V ~- = [(~/3x2), - (O /~x l ) ] ,  
gA(q, q') is the Green function of the Laplace operator in A with Dirichlet 
boundary conditions (that is, AqgA( q, q') = - 8(q - q'), with gA(q, q') = 0 
for q or q' ~ 3A), and "TA(q) = �89 3'A(q, q) 

"lA(q,q') = gA(q,q ' )  + 2-~ l n ( [ q -  q't) (2.2) 

If A is not bounded we also require gA(q, q') ~ 0 as I ql ~ oo. The function 
~TA takes into account the interaction between a vortex and the boundary. 
When A = ~2, g~2 = (l/2~r)ln(lq - q'l) and ~TA is absent. 
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The equation of motion (2.1) can be immediately put into a Hamilto- 
nian form. If we define the energy of a vortex system by 

N N 

1 > aiajgA(qi ' qj) + ~a a~YA(qi) ( 2 . 3 )  H ( A , N )  = ~ "=1 i=1 
i~j 

we have 

8 H ( A , N )  aiYci( t ) = 

(2.4) 
8 H ( A , N )  

ai~i(t ) = 8X i 

Thus, for the evolution determined by (2.4) we have conservation of energy 
and Liouville's theorem holds. 

This allows the construction of an equilibrium distribution and the use 
of methods of statistical mechanics. (6) 

In this paper we want to study the dynamical problem (2.1) in the 
thermodynamic limit in which infinite vortices are considered and where 
the local density remains finite. 

We study the problem in the strip D = R • (0, a). The Green's function 
in D is 

f +~ e x p ( - i p l x -  x ' l ) m r  nTr , 
gD ( q, q,) = __1 2., J -  oo dp . . . .  sin y s i n - s - y  

qra n = 1 /0 2 + n 2 a 

, , x,l)si n Eft y sin -~- y m r '  = 1 ! e x p ( - n l x -  
a n = i n  

c o s h O r / a ) ( x  - x ' )  - c o s O r / a ) ( y  + y ' )  
- l ln  ( 2 . 5 )  

4~r c o s h ( ~ r / a ) ( x  - x ' )  - c o s ( ~ r / a ) ( y  - y ' )  

As we see, when Iq - q ' l -~  ~ ,  gD ~ 0  exponentially; when Iq - q'l ~ 0 ,  g~ 
diverges as a logarithm. This divergent character of the interaction can 
produce collapses. To avoid this difficulty we introduce a regularized 
version of the interaction which is finite together with its derivative and we 
study the following dynamical system (which is related but not equal to the 
original one): 

@i(t) = ~a ajV~-g(qi(t), qj(t)) + aiVil~(qi(t)) 
J 

= ~ a j K l ( q i ( t ) ,  q j ( t ) )  + a iK2(qi ( t ) )  (2.6) 
J 

and we impose the following conditions: 
(H.1) (aj} is bounded, i.e., supjaj = A < oo. 
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(H.2) Kl(q,q' ) E Cl(D x D) is bounded and there exists 6 > 1, such 
that IK,(q,q')l < ~-l(Iq - q' l )  = C / I q  - q'l 8 for some C > 0. 

(H.3) There exists a nonincreasing, bounded, integrable function 
~ - 2 ( I q -  q ' l )~  C1[ 0, + m )  such that [Vqgl(q,q')l <<. Y 2 ( l q - q ' l )  and 

IVq,gl(q,q')[ < 3-2(Iq - q'l). 
(H.4) K2(q) ~ CI(D) and Ig2(q)[ < K2, Ivg2(q)l ~< g3, g2,g3 > O. 
Of course there are many ways to modify (2.5) to fulfill the above 

conditions. For instance, a possible choice for g and 7 is (e > 0) 

g(q,q') = ( 0 , ( I q "  - q'l)gD(q',q")dq" 
d13 (2.7) 

y(q) = f oc(q- q')'~D(q')dq ' 

where 0, E C~(N I) is supported in [ -e ,c] ;  ~ describes the "interaction" 
between two bubbles of vorticity and "7 the "interaction" between a bubble 
and the boundary. Another choice for the regularized interaction is 

M f+f  e x p ( _ i p l x _  x,I) 
g'(q' q') = ~---S1 ~ 1  dp . . . . . . .  p2 + n 2 + ep4 sin -a-mr Y sin ~nrr y,  (2.8) 

is bounded and satisfies (H.4). 
This choice satisfies all the above conditions and, of course, when 

M---> m and c ~ 0 ,  ~---> gD. 

3. INFINITE VOLUME DYNAMICS 

We introduce the set f~ of locally finite labeled configuration. A 
configuration ~0 E a is a countable sequence w--{qi,ai} of positions qi 
= (xi, y~)E D and vorticity a~ < A with a finite number of points in 
bounded regions. We suppose that the labeling is ordered in a way such 
that i < j  implies one of the following: [xi] < [xj]; ]x~[ = Ixjl and x i < xj; or 
x i = xj and Yi < Yj. 

For each ~0 = {q z, a~} ~ ~2 we formally define the map o ~ 0  t as a 
solution of the integral problem: 

qi(t) = q~ + Fi(s)ds (3.1a) 

where 

Fs(s ) = ~ ajK1(q~(s),qj(s)) + a~K2(qi(s)) (3.1b) 
j~7~ 

and KI( q, q'), K2(q) are the regularized forces satisfying conditions (H.2), 
(g.3), (U.4). 

In order to give meaning to the initial value problem (3.1 a, b) we need 
that the force on the ith vortex, i.e., the term Fi(s ) in (3.1a), remain 
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bounded in bounded time intervals. It is known (u) that this might not be 
true for an arbitrarily chosen configuration, and it is necessary to make a 
restriction to a subset s c s which excludes the creation of singularities. 
On the other hand, the set s must be large enough for thermodynamically 
interesting measures. 

We set 

s = {~o ~ s  : Q(co) < oe} (3.2) 

with 

Q(co) = max 1,sup sup (3.3) 
x a>~(x) d 

where ~(x) = max{lnlx I, 1} and N(co lR(x ,  d)) is the number of vortices in 
the rectangle R ( x , d )  = [x - d / 2 , x  + d/2]  • (O,a). 

As a consequence of (3.3) we have 

N(,o I R(x,d)) < Q(,o)(,~(x) + d) (3.4) 

The set s has full measure with respect to the Gibbs measure, as we 
will prove later. 

We introduce a partial dynamics ~o~0~ useful to construct the 
solution of (3.1) (see Theorem 3.2): 

fo ' ~  q~(t)  = q~ + F~ (s)ds  if Ill < n (3.5a) 

qin(t) = qi if Ii[ > n 

where 

Fin(s) = Z ajKl(qin(s)'Cljn(s)) + aiK2(qn(s)) (3.5b) 

The map ~--->0~7 = {qin(t),ai) describes the evolution of the first n 
vortices in the field generated by themselves, by the others which remain 
fixed, and  by the boundary. 

We first prove the following theorem that gives a bound for the 
displacement and the forces on the vortices, independent of the partial 
dynamics ~". 

T h e o r e m  3.1. Let ~ = (qi,a~)i~ ~ E s and suppose that the interac- 
tions Kl(q, q'), K2(q) in (3.5a, b) satisfies the conditions (H.2), (H.4). Then 
there exist two positive, continuous, increasing functions hl(o~, It[), h2(o~, [tl), 
independent of n, such that, for each t E R, we have 

Iq~(s) - q;I < h](o~, [tl)~(q~ ) (3.6a) 

[F~n(s)l < h2(~, Itl)~(q3, Isl ~< Iti (3.6b) 
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Proof. We have, for each t > 0 (we omit the suffix n), 

[ qi( t) - qil <<- fotlFi( s)l ds 

In order to obtain a bound for F,(s) we construct a sequence of 
rectangular shells, centered in the geometrical point xs(s ). Hence we put 
b 0 = O, b n = expn (for each n >/ 1), and we define, for n/> 1 

A~ = ( x  ~ R : bn_, < Ix/(s) - xt < b~ I, = An • (0 ,a)  (3.7a) 

B n = ( x E R : O < . ] x i ( s ) - x [ < b . } ,  R n = B . X ( O , a  ) (3.7b) 

Next we define for t >/0 

si(t ) = sup [q i ( s ) -  qi] (3.8a) 
s ~[0,t] 

d( t) = supsi( t) / ~p( qi ) ( 3 . 8 b )  
iEz 

We consider a vortex qj(t) that lies in the rectangle R k at time t, and 
estimate in which rectangle R k D R k this vortex can lie at time 0. We note 
that a vortex that at time t is in the geometrical point q(t) = (x(t) ,  y( t ) )  was 
at time t at most in the rectangle 

I x ( t )  - d( t )q~(s  + d(t)ep(2(t))  ] • (O,a) 

where 2(t)  is the solution of the equation: 

~ ( t )  = Ix(t)l + d( t )~(~( t ) )  (3.9) 

Then, using the fact that the solution Y(t) is a monotone nondecreas- 
ing function of Ix(t)l we have that, if xi(t  ) E Bk, then: 

xi(O ) @ Ixi( t )  - b k - d(t)op(~k(t)) ,xi(t  ) + b k + d(t)ep(Zk(t)) ] 

where Zk(t ) is the solution of 

Zk(t ) = ]xi(t)l -I- b k + d(t)cg(Zk(t)) (3.10) 

Then 

Rk = [x i ( t )  - bk -- d ( t ) w ( Y k ( t ) ) , x i ( t )  + b~ + d ( t ) w ( z ~ ( t ) )  1 • (0,a) (3.11) 
With this estimate we obtain a rough bound on the number of vortices in 
the rectangular shell lk: 

N(o~tllk) < N(o~tlRk) < N(~I/~k)  

<<. Q(to)[ep(xi(t)) + exp(k) + d(t)ep(Zk(t))  ] 

<<. Q(oO(cp(xi(t)) + exp(k) + d(t)c ,[q~(d( , ))  + ~(x i ( t  ) + b~)]) 

< c2 Q(co)[ep(xi(t)) + exp(k) + d ( t ) [ w ( d ( t ) )  + w(xi( t ) )  + k]) 
(3.12) 
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In (3.12) we have used (3.4), the bound: 

ep(x(t)) < cl[ cp(d(t)) + qg(x(t))] (3.13) 

and ~p(x + y) ~< ~(x) + ~(y). 
Now, from (3.12) we obtain a bound on the forces. First we note that 

the following series are convergent [see Eq. (H.2)]: 

S 1 = Y,(O) + '~  J - , ( e  k) 
k = l  

S 2 = ~ kJ-,(e k) (3.14) 
k = l  

$3= J-i(  0) + E ekSl(ek)  
k = l  

Hence using (3.5b) and (3.12), 

IF~(s)l <<. ~. lajl[g(qi(s),~(s))l+ [aillg2(qi(s))[ 
j ~ Z  

~ A ~ sup IK(q,q,(s))lu(~, IRk) + Af2 
k = l  q E l  k 

<~ Ac 3 Q(o~) ~ ~-l(b k_ ,)( ep(xi(s)) + exp(k) 
k = l  

+ d(s)[ ep( d(s)) + rp(xi(s)) + k]} 

<<. Ac 4 Q(~)( S, [ fP(Xi(S)) + ep(d(s))d(s) + d(s)~p(xi(s)) 1 

+ S2d(s ) + $3) (3.15) 

We insert this bound in 

d(t) ~<(tsup IFi(S)l ds (3.16) 
.,o i ~  ~(q/) 

and use 

r(x, fs)) 
r(x,) <<. c~(d(s)) (3.17) 

to obtain 

d(t) < Ac s Q(o~) fotdS{ Sl[cp(d(s)) + d(s)~(d(s))] + Szd(s) + $3} 

< A const Q(~O)fotds[~p(d(s)) + 1][ d(s) + 1] (3.18) 
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The differential equation associated with the integral inequality (3.18) 
has a global solution and hence, using Gronwall's lemma, we prove (3.6a). 
Next (3.6b) is obtained by inserting the bound (3.6a) in inequality (3.15). 

[] 
With the a priori bound of Theorem 3.1 we can prove the existence 

and uniqueness of the solution of the dynamical problem (2.6). 

Theorem 3.2. Let to = (qi,a~}i~z E f~o. There exists a sequence of 
integers n k such that 

lim qi"~( t) = qi( t) (3.19) 
k---,x oo 

where qi"(t) are defined in (3.5), and 

where 

qi(t) = q~ + s)ds (3.20) 

Fi(s ) = ~ ajKl(qi(s),qj(s)) + aiK2(qi(t)) (3.21) 
j ~ z  

Hence there exists a solution e t = {qi(t),ai). 
Further the solution qi(t) satisfies the bound: 

Iqi(t) - q;I < h(e,  [tl)q0(q~) (3.22) 

where h(e, [tl) is a positive continuous increasing function of t. Finally, this 
solution is unique in the set of functions having the bound (3.22). 

Proof. The existence of the solution and the property (3.19), (3.22) 
are consequences of the bound (3.6a, b) and of the Ascoli-Arzehi theorem. 

To prove the uniqueness we use an iterative procedure. Let e l ( t )  
= { qil(t), a i } and e2(t) = { q,Z(t), a,.) be two solutions of (3.20) which satisfy 
the bound (3.22) starting from the same initial condition e = (qi ,ai}iez 
e a 0. We want to estimate the difference 

q i l ( t ) - q ~ ( t ) = f o ' d S [ F , ( e ' ( s ) ) -  Fi(ea(s)) ] (3.23) 

For this purpose we separately treat the contribution to the force from 
the vortices near qi and far from qi. The first term is controlled using (H.3), 
the second one is estimated by using (H.2). 

We introduce the sequence r k defined as 

r~ = ro(1 + a) k (3.24) 

where a > 0, and r 0 > 0 (r o will be chosen later on). 
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We suppose now Ixil < r~ and we write 

F~(o~ ' ( s ) ) -  F/(~2(s))  = ~]  aj[Kl(qi'(s),qj '(s))- Kl(qZ(s),qjZ(s))] 
Ixsl < rk + i 

+ ~ aj[K,(q](s) ,qj ' (s))-  K,(q~(s),q/(s))] 
Ixji>rk+, 

+ai[ K2(qi'(s))- K2(qi2(s))] 
(3.25) 

Using Lemma  1 (see below), we control  the first sum on the r ight-hand 
side of (3.25): 

aj[ Kl(qi'(s)'qj'(s)) - Kl(q~(s),q~(s)) ] 
Ixjl ~ ~+ 1 

+ai[ K2(qi '(s))-  K2(q2(s))] 

< A (s)rp(rk+ 1)8(rk+1, s) (3.26) 

where 

8 ( r  k , t )  = sup sup Iqjl(s) - qg(s)[ (3.27) 
s e[0,t] Ixjl < rk 

We want  to estimate the second term in the sum (3.25). We choose r o 
such that  

r o >1 4a-ld(t)~p(ro(1 + a))  (3.28) 

Then  if [xil < r k and [xj[ >>- rk+ t we have that  

Ix~)(s) - x){)(s)] >1 ark~2 for each s E [0 , t ]  (3.29) 

Hence  

aj[K,(q,'(s),qg(s))- Kl(q~(s),qf(s)) I 
Ixsl>~ rk+~ 

< 2 +1(')1 < B ( s ) ( 2 / ( a r ~ ) )  a - ' ~ ( r k )  ( 3 . 3 0 )  
Ixi(s)- x/(s)l > ~rk/2 

where B(s) is a positive, continuous,  nonincreasing funct ion of s. To  obtain 
this last equat ion we must  use the bound  (3.22) and (H.2) (see L e m m a  2). 

Combining the estimates (3.26) and (3.30) we have 
8 - 1  (_2) I~(~ol(s)) - F~(~o~(~))l < A(t)~(r~.l)8(r~+,)  + ~( t )  ~r~ 

(3.31) 
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Inserting (3.31) into the integral Eq. (3.23) we obtain 

;0' ~(rk,O <" A(t)~(rk+,) ds~(r~+, ,s)d~+ t~(t) ~r~ ~(r~) (3.32) 

Now we iterate (3.32): 
n t 

8(ro,t) -< A"(0 II ~o(r~)(ds2(S'd,,... fos"-'ds. 8(r,,s,) 
k = 1 J 0  J 0  

+,B(t) ,=l  ~ [A( t ) ]  ~ ~__ ~p(r~)]t-d-~k ) 

X~(r l ) fo tdS l foS lds2  fo sl l d s l + t B ( t ) ( 2 )  ' - 1  "'" ar---o q~( r~ 

< A n(t)~p"(r.) ~. + tB(t) ep(ro) 

+ ~ A ' ( 0 ~  '+ (,) ~ 
l = l  

t n .< A'(0[(2~(ro))" + (2n~(1 + ~))nl ~.' 

+t~(O ~(ro) A'(t)[(Z~(ro)) '+' 
~ l = 1 

+(2(l + 1)~(1 + .))'+'] 

• (1 + c~)-'(8-1)I! t-~l } (3.33) 

We can evaluate this expression when n ~ oo. The first term on the 
right-hand side goes to zero when t < 1/6A(t)~p(1 + ~) and the second is 
independent of n. Now we let r 0 ~ ~ and the last term vanishes when t is 
small enough; more precisely 

[ ( 6 -  1)(1 + a )~- '  (1 + c~) ~=1 ] 
t < min 2A(t)  ' 6A( t )~ (1  + a) 

In conclusion we have proved that for small t and for each r 

6(r,t) = sup sup IqJ(s) - qj2(s)l = 0 
s E [ 0 , t ]  [xjl < r 

i.e., we have uniqueness for small time. Because of the uniformity in t of 
the a priori bound (3.22) we can prove the result for all time. �9 
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Lemma 1. Let K 1 satisfy (H.3), let Ix~l ~< r~, and let q~(s) satisfy 
(3.20) and the bound (3.22); then 

2 IK,(q, ' ( , ) ,q)(~))  - Iq(q?(s),qg(s) ) ~ A(s~r(~+,)~(~+, ,s) 

(3.34) 

where A (s) is a bounded positive increasing function of s. 

Proof. 

2 ] g l ( q i l ( s ) ' ~ ( S ) )  - Kl(qil(s) '@2(s))[ 
Ixjl <- rk + l 

<" 2 ] g l ( q i l ( s ) , q ; ( s ) ) -  Kl(qi l (s ) ,q2(s) )[  
Ixjl~rk+~ 

+ ] K , ( q ~ ' ( s ) , q T ( s ) ) -  K , ( q T ( s ) , q f ( s ) ) [  (3.35) 

We study the first term on the right-hand side of (3.35). Let A,,, 1,,, B,,, 
R n be the sequences of shells and rectangles centered in the point qs(s) 
defined in (3.7a, b), with the choice 

b 0=  0, b. = Aexp(n) for n /> 1 and A = 2d(s)cp(rk+l)  

As a consequence of the bound (3.22), if q ) ( s )~  In, then qZ(s) 
E In_ 1U I n U In+ l, and also if q)(s) E I~, then qf(s)  E R .+  1 . 

Hence 

E IKl(q~'(~),q)(s))- K,(q~'(s),qj2(s))l 
Ixjl < rk+l 

< E N('~ 
n=l 

• sup [Kl (q l i ( s ) ,qg(s ) )  - g l ( q i l ( s ) , q f ( s ) ) l  (3.36) 
ql(s) E I. 

qf(s) EI.,-IU I. U I.+l 

By use of the mean value theorem we have 

sup I K , ( q ] ( s ) , q g ( s ) ) -  Kl(qi l (s ) ,q2(s) )[  
qj'(s) S l .  

qf(s) e l ._ lU l. U l.,+l 

sup  ] N i l ( s ) -  qj2(~)l]Vqgl(qi(~),q)lq~l n 1UinUln+ 1 

qJ(~)el._lu I. U1.+l 

<~ 6(rk + , , s ) J - 2 ( b , _ 2 )  (3.37) 
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We have also 

N(w'(s),I n) < N(~o'(s),R.) <~ Q(~'(s))[~p(qi(s)) + Ae"] 

< Q(.'(s))[~P(rk) + d(n)ep(rk) + 2d(s)~p(rk+,)exp(n)] 
< a,(s)~p(Q+ ,)exp(n) (3.38) 

Inserting (3.38) and (3.37) into (3.36) we have 

~. ]Ki(qi ' (s) ,#(s))-  Kt(qi'(s),qj2(s))l 
Iqjl-< r~+l 

<- az(S)~(rk+, ,s)q)(rk+l) exp(n)3-2(b.-2)  + ~-2(s) (3.39) 

Using the nonincreasing behavior of 3 -  2 we have 

~ exp(n)3-2(bn-2) < 2 exp(n)J -z (d(s )exp(n-  2)) 
n = 2  n = 2  

This sum is convergent and so in (3.35) the first term satisfies the 
statement. The second term in (3.35) can be treated in a similar way. 

i .emma 2. Let K 1 satisfy (H.2) and qi(t) satisfy (3.20) and the bound 
(3.22). Then we have for s E [0, t] 

]gl(qi(s),qj(s)) ] <<. B(t)cg(rk) ( 1 ) ' - '  (3.40) 
IxXs)- x j ( s ) ]  >1 r 

Ix, i-< ~, 

for a positive, bounded constant B(t). 

Proof. 

y~ 
IXi(S) --  Xj(S) l  >1 r 

[xi] < rk 

Let 1 n, R n the sequence (3.7a, b) with bn = r exp(n). We have 

Ig,(qi(s),qj(s))l< N(o~(s) I/.) 
n = l  

f ' j  < c, Q(,,,(~))( !r,.=,t' ~: [,~(,',~) + d(,),~(rk)+ r e x p ( . ) ]  exp(n -- ~) 

�9 



Time Evolution of an Infinite Number of Vortices in a Strip 145 

So we have proved the existence and the uniqueness of the dynamics 
when the initial conditions belong to f~0. 

This result is relevant in statistical mechanics if ~2 0 is large enough. For 
this purpose we introduce an additional hypothesis on the interaction: 

(H.5) g(q, q') is the integral kernel of a positive quadratic operator on 
L2(D, Lebesgue); g and ~ are bounded. 

An example of g satisfying (H.5) is given in (2.8). 
So we shall prove that 

ff(ao)  = ~({,, ,  E a I Q(,,,) < oo }) -- 1 (3.41) 

where /~ is the Gibbs measure obtained as the local weak limit of finite 
volume Gibbs measures /~A, for some sequence of compact regions A 
invading the strip D. We define the finite volume Gibbs measure for a 
system of vortices in the domain A c D, with the vorticity distributed 
according to some finite, positive measure dX(a) with the property dX(a) 
= d X ( -  a): 

oO z n n 

P 'A(d 'w)  = ZA-1( fl, 2)n~__O= -~. ~=1 

 oxp[ a, ajg(q,,qj)- fl 2 a~(q,)}dq, . . . 
i,j=l i=l 
i=/-j 

dq. (3.42) 

It can be proved that the correlation function 

oo 1 ) 
z"+P r I~ d•(ai) o?,(B,z) = z;'(/~,~) 2 - - ~ .  j ~ , _ ~  

p=O 

• 1 
i~j  

dq,,+l.., dq,,+p (3.43) 

has the bound 

p~(z, fl) < , "  with ~/> O. (3.44) 

We give here only a short sketch of the proof following Refs. 6 and 13. 
For simplicity we suppose a i = _ 1 and fi = 1. 

We introduce a Gaussian process ~(q) with mean 0 and covariance 
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g(q, q'). In terms of this process the correlation function can be written as 

P~(ql . . . . .  q., a 1 . . . . .  a n ;z) 

_ 1 ~ z"+p fA Za(fl, z) p=0 P !2p aj=~+l_ pdq,+~.., dqn+p 
j = n + l  . . . . .  n + p  

• exp - i,j=~' 1 aiajg(q~, ~.) - ?.= 
i ~ j  

iq n 

=z"exp(j~=lc(q~))(exp[zf e~(q)c~ 

where 

• -1 (3.45) 

c(q) = �89 g(q,q) - ~(q) (3.46) 

and ( . )  denotes the expectation with respect to the Gaussian process 
(Sine-Gordon transformation). 

From (3.45) and (3.46) we obtain the bound (3.44) with 

'qn = znexp( ~] �89 g(qi'qi)- ~(qi) (3.47) 

Let Na(w) denote the number of vortices in the domain A, andpa(n) its 
probability distribution: 

p/,(n) = ~A((~ [ NA(o~) = n))  (3.48) 

From the bound (3.44) we also have [V(A) = volume of A] 

pA(n) < ~ Vn(A) (3.49) 

Using (3.49) we obtain the bound 

/iA(exp[N~(o~)]) = ~ exp(n)pa(n) -<< exp[3v/V(A)] (3.50) 
n = 0  

and for the limit measure 

/z(exp[N(~ ]R(x,d))]) < constexp(3~da) (3.51) 

Now, by the Tchebychev inequality we have for any m E 

t~((o~lN(o~lR(x,d)) >1 md)) < constexp[d(3ml - m)] (3.52) 



Time Evolution ol an Infinite Number of Vortices in a Strip 147 

Hence 

F((~[Q(~0) >~ m ) ~ <  ~(kY~ 

< C 2 ~  
k = l  n > qv(k) 

where cl, c2 are suitable constants. 
From (3.49) it follows that 

F((~o I Q(~0) >i m}) < 
n = l  

U {r176 >1 cimn}) 
n > q)(k) 

n@N 

exp[ n(3m? - c,m) ] (3.53) 

(3.54) 

and hence we have the assertion F(s  1 by using the Borel-Cantelli 
lemma. 

Finally we note that we can use the same technique of Theorems 3.1 
and 3.2 for proving the existence and uniqueness of solutions of the 
Newton equation of motion of an infinite one-dimensional system of 
particles interacting via long-range forces. 

T h e o r e m  3.3. Let s be the set of locally, finite configurations 
~o = (qi, Pi } i ~ z with qi, Pi E R. Newton equations of motion take the form 

qi(t) = qi + Pi + fo '(t - s)Fi(s)ds (3.55) 

where 

F~(s) = - ~ Vi~([q/-  qjl) (3.56) 
j~i  

and ff satisfies the following hypotheses: 
(1) q/(r) is bounded and there exists 6 > 1 such that W(r)l < 

cons t / r  ~, for r > 0. 
(2) There exists a nonincreasing, bounded, integrable function ~-2(r) 

E C ~[0, + m) such that Iqr < J-2(r) for r > 0. Let s = (~0 ~ a l Q(o~) 
< m),  where 

Q(~0) = max{ Ql(O~), Q2(~0)) 

Q l ( W ) = m a x ( s u p  sup N ( w l R ( x ' d ) )  ) 
I xER d>q(x) d ,1 (3.57) 

Q2(~o) = max { sup [pi(~o)l/ep(qi(~o)), 1 } 
i@Z 

Then, if o~ E s there exists a unique solution of (3.55). 
If we introduce the additional hypothesis: 
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(3) Supers tab i l i ty :  q~(r) = ffl(r)  + qJ2(r), where  ~2( r ) />  0, ~p2(0) > 0 
a n d  c o n t i n u o u s  in  0, q~l(r) is s table,  i.e., there  exists a B /> 0 such tha t  

(P2(lqi -- ~[)  >/ - - n B  
i,j= 1 
i<j  

for each  n a n d  q ~ ~ ;  

we c a n  prove  that/z(f~0) = 1 where  bt is the G i b b s  measure .  

W e  r e m a r k  tha t  this resul t  c a n  be  used  to s tudy  a t w o - d i m e n s i o n a l  

C o u l o m b  sys tem with a c o n t i n u o u s  charge  dens i ty  m o v i n g  in  a str ip wi th  
Di r ich le t  b o u n d a r y  cond i t ions .  
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